Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2,5-Dimethylphenyl)succinamic acid monohydrate

B. S. Saraswathi, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 21 June 2011; accepted 25 June 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.099 ; w R$ factor $=0.147$; data-to-parameter ratio $=13.6$.

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the conformation of the $\mathrm{N}-\mathrm{H}$ bond in the amide segment is syn to the orthomethyl group and anti to the meta-methyl group in the benzene ring. Further, the conformations of the amide O and the carbonyl O atom of the acid segment are anti to the adjacent methylene H atoms. The $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are syn to one another. The structure shows an interesting hydrogen-bonding pattern with the water molecule forming hydrogen bonds with three different molecules of the compound. In the crystal, molecules are packed into infinite chains through intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For our studies of the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (1999, 2000, 2010a,b); Saraswathi et al. (2011). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For packing of molecules involving dimeric hydrogenbonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=239.27$
Monoclinic, $P 2_{1} / c$

$$
\begin{aligned}
& a=22.012(4) \AA \\
& b=6.051(1) \AA \\
& c=9.558(2) \AA
\end{aligned}
$$

$\beta=95.90(1)^{\circ}$
$V=1266.3$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation

Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.099$
$w R\left(F^{2}\right)=0.147$
$S=1.08$
2293 reflections
168 parameters
4 restraints
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.24 \times 0.08 \times 0.04 \mathrm{~mm}$

Diffraction, 2009)
$T_{\text {min }}=0.978, T_{\text {max }}=0.996$
4503 measured reflections
2293 independent reflections 964 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.075$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}_{\AA_{\circ}^{-3}}$
$\Delta \rho_{\min }=-0.22 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(2)$	$2.10(2)$	$2.914(4)$	$161(4)$
$\mathrm{O} 2-\mathrm{H} 2 O \cdots 4^{\mathrm{ii}}$	$0.83(2)$	$1.81(2)$	$2.621(5)$	$164(5)$
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 3$	$0.84(2)$	$2.01(2)$	$2.831(5)$	$168(5)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 42 \cdots \mathrm{O}^{\text {iii }}$	$0.83(2)$	$2.07(2)$	$2.882(5)$	$166(5)$
Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2} ;$ (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2} ;$ (iii) $-x+1,-y,-z+1$.				

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: SJ5169).

References

Gowda, B. T., Bhat, D. K., Fuess, H. \& Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.
Gowda, B. T., Foro, S., Saraswathi, B. S. \& Fuess, H. (2010a). Acta Cryst. E66, o394.
Gowda, B. T., Foro, S., Saraswathi, B. S. \& Fuess, H. (2010b). Acta Cryst. E66, o908.
Gowda, B. T., Kumar, B. H. A. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.
Jagannathan, N. R., Rajan, S. S. \& Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Saraswathi, B. S., Foro, S., Gowda, B. T. \& Fuess, H. (2011). Acta Cryst. E67, o236.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o1879 [doi:10.1107/S1600536811024937]

N-(2,5-Dimethylphenyl)succinamic acid monohydrate

B. S. Saraswathi, S. Foro and B. T. Gowda

Comment

The amide and sulfonamide molecules are important constituents of many biologically important compounds. As a part of our studies of the substituent effects on the structures and other aspects of this class of compounds (Gowda et al., 1999, 2000, 2010a,b; Saraswathi et al., 2011), in the present work, the crystal structure of N-(2,5-dimethylphenyl)-succinamic acid monohydrate (I) has been determined (Fig. 1). The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the amide segment is syn to the ortho-methyl group and anti to the meta-methyl group in the benzene ring, similar to the syn conformation observed between the amide hydrogen and the ortho-methyl group in N-(2-methylphenyl)succinamic acid (II) (Gowda et al., 2010b) and the anti conformation observed between the amide hydrogen and the meta-methyl group in the benzene ring of N-(3methylphenyl)succinamic acid (III) (Gowda et al., 2010a). The conformation of the amide oxygen and the carbonyl oxygen of the acid segment are anti to each other. Further, the conformations of these are anti to the adjacent methylene H -atoms. The $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are in syn position to each other, similar to that observed in (II) and (III).

The structure shows interesting H -bond pattern with water molecule forming H -bonding with three different molecules of the compound. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2). The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

A solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 2,5-dimethylaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,5-dimethylaniline. The resulting title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Colorless needle like single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH gorup and the water molecule were located in a difference map and their position refined with $\mathrm{N}-\mathrm{H}$ $=0.86(2) \AA$ and $\mathrm{O}-\mathrm{H}=0.82(2) \AA$. The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$, . All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level. A hydrogen bond is drawn as a dashed line.

Fig. 2. Molecular packing of the title compound with hydrogen bonds shown as dashed lines.

N-(2,5-Dimethylphenyl)succinamic acid monohydrate

Crystal data

$$
\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}
$$

$$
M_{r}=239.27
$$

Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=22.012$ (4) \AA
$b=6.051$ (1) \AA
$c=9.558(2) \AA$
$\beta=95.90(1)^{\circ}$
$V=1266.3(4) \AA^{3}$
$Z=4$
$F(000)=512$
$D_{\mathrm{x}}=1.255 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 663 reflections
$\theta=2.8-27.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.24 \times 0.08 \times 0.04 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube graphite
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.978, T_{\text {max }}=0.996$
4503 measured reflections

2293 independent reflections
964 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=25.3^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-26 \rightarrow 26$
$k=-7 \rightarrow 6$
$l=-11 \rightarrow 8$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.099$
$w R\left(F^{2}\right)=0.147$
$S=1.08$
2293 reflections
168 parameters
4 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0275 P)^{2}+1.0954 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.1917(2)$	$0.0833(9)$	$0.5880(4)$	$0.0380(13)$
C2	$0.1742(2)$	$-0.1196(9)$	$0.6356(5)$	$0.0437(14)$
C3	$0.1180(3)$	$-0.2041(9)$	$0.5786(5)$	$0.0550(15)$
H3	0.1049	-0.3402	0.6091	0.066^{*}
C4	$0.0817(2)$	$-0.0882(10)$	$0.4772(6)$	$0.0584(17)$
H4	0.0447	-0.1487	0.4400	0.070^{*}
C5	$0.0990(2)$	$0.1137(10)$	$0.4304(5)$	$0.0464(15)$
C6	$0.1550(2)$	$0.2008(8)$	$0.4869(4)$	$0.0404(13)$
H6	0.1678	0.3377	0.4568	0.048^{*}
C7	$0.2891(2)$	$0.2840(9)$	$0.5756(4)$	$0.0392(13)$
C8	$0.3462(2)$	$0.3619(9)$	$0.6640(4)$	$0.0439(14)$
H8A	0.3352	0.4145	0.7538	0.053^{*}
H8B	0.3738	0.2377	0.6820	0.053^{*}
C9	$0.3788(2)$	$0.5434(8)$	$0.5942(5)$	$0.0474(14)$
H9A	0.3490	0.6525	0.5578	0.057^{*}
H9B	0.4069	0.6156	0.6646	0.057^{*}
C10	$0.4137(2)$	$0.4669(10)$	$0.4765(5)$	$0.0387(13)$

C11	$0.2134(2)$	$-0.2482(9)$	$0.7455(5)$	$0.0652(17)$
H11A	0.2135	-0.1758	0.8349	0.078^{*}
H11B	0.2544	-0.2560	0.7198	0.078^{*}
H11C	0.1973	-0.3949	0.7518	0.078^{*}
C12	$0.0596(2)$	$0.2444(10)$	$0.3213(5)$	$0.0719(19)$
H12A	0.0204	0.1743	0.3034	0.086^{*}
H12B	0.0789	0.2503	0.2358	0.086^{*}
H12C	0.0543	0.3918	0.3553	0.086^{*}
N1	$0.24841(18)$	$0.1758(7)$	$0.6459(3)$	$0.0431(11)$
H1N	$0.2554(19)$	$0.147(7)$	$0.733(2)$	0.052^{*}
O1	$0.28284(14)$	$0.3146(6)$	$0.4485(3)$	$0.0590(12)$
O2	$0.41537(16)$	$0.6192(6)$	$0.3788(3)$	$0.0571(11)$
H2O	$0.436(2)$	$0.562(8)$	$0.321(4)$	0.068^{*}
O3	$0.43953(15)$	$0.2910(6)$	$0.4737(3)$	$0.0516(10)$
O4	$0.48537(18)$	$-0.0138(6)$	$0.6831(4)$	$0.0569(11)$
H41	$0.472(2)$	$0.090(6)$	$0.631(4)$	0.068^{*}
H42	$0.505(2)$	$-0.111(6)$	$0.647(5)$	0.068^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.042(4)$	$0.043(4)$	$0.031(3)$	$-0.007(3)$	$0.008(2)$	$-0.001(3)$
C2	$0.048(4)$	$0.045(4)$	$0.040(3)$	$0.002(3)$	$0.012(3)$	$-0.002(3)$
C3	$0.060(4)$	$0.043(4)$	$0.066(4)$	$-0.009(4)$	$0.023(3)$	$-0.003(3)$
C4	$0.045(4)$	$0.066(5)$	$0.064(4)$	$-0.014(4)$	$0.005(3)$	$-0.010(4)$
C5	$0.036(3)$	$0.062(5)$	$0.041(3)$	$-0.005(3)$	$0.002(3)$	$-0.006(3)$
C6	$0.042(3)$	$0.045(4)$	$0.034(3)$	$-0.003(3)$	$0.004(2)$	$0.001(3)$
C7	$0.034(3)$	$0.052(4)$	$0.031(3)$	$0.003(3)$	$0.001(2)$	$0.000(3)$
C8	$0.035(3)$	$0.067(4)$	$0.030(2)$	$0.001(3)$	$0.002(2)$	$-0.003(3)$
C9	$0.044(3)$	$0.057(4)$	$0.041(3)$	$-0.005(3)$	$0.008(2)$	$-0.008(3)$
C10	$0.030(3)$	$0.054(4)$	$0.030(3)$	$-0.005(3)$	$-0.004(2)$	$0.001(3)$
C11	$0.068(4)$	$0.059(4)$	$0.071(4)$	$0.011(4)$	$0.017(3)$	$0.012(3)$
C12	$0.042(4)$	$0.109(5)$	$0.062(3)$	$-0.010(4)$	$-0.006(3)$	$0.003(4)$
N1	$0.045(3)$	$0.057(3)$	$0.028(2)$	$-0.011(3)$	$0.003(2)$	$0.009(2)$
O1	$0.048(2)$	$0.104(3)$	$0.0241(17)$	$-0.010(2)$	$0.0010(14)$	$0.005(2)$
O2	$0.066(3)$	$0.058(3)$	$0.051(2)$	$0.009(2)$	$0.0200(18)$	$0.010(2)$
O3	$0.055(2)$	$0.056(3)$	$0.045(2)$	$0.012(2)$	$0.0104(17)$	$0.005(2)$
O4	$0.069(3)$	$0.056(3)$	$0.048(2)$	$0.015(2)$	$0.019(2)$	$0.0068(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.378(6)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{C} 6$	$1.389(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.499(6)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.427(6)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.396(7)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 11$	$1.506(6)$	$\mathrm{C} 10-\mathrm{O} 3$	$1.208(6)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.382(7)$	$\mathrm{C} 10-\mathrm{O} 2$	$1.315(6)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.368(7)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600

sup-4

supplementary materials

C4-H4	0.9300
C5-C6	1.397 (6)
C5-C12	1.511 (6)
C6-H6	0.9300
C7-O1	1.223 (4)
C7-N1	1.344 (5)
C7-C8	1.516 (6)
C8-C9	1.504 (6)
C8-H8A	0.9700
C2-C1-C6	121.6 (5)
C2- $21-\mathrm{N} 1$	119.0 (5)
C6- $\mathrm{C} 1-\mathrm{N} 1$	119.5 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	117.6 (5)
C1-C2-C11	122.1 (5)
C3-C2-C11	120.3 (5)
C4-C3-C2	120.9 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.6
C2-C3-H3	119.6
C5-C4-C3	121.5 (5)
C5-C4-H4	119.3
C3-C4-H4	119.3
C4-C5-C6	118.3 (5)
C4-C5-C12	122.3 (5)
C6-C5-C12	119.4 (5)
C1-C6-C5	120.1 (5)
C1-C6-H6	119.9
C5-C6-H6	119.9
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	123.9 (4)
O1-C7-C8	120.6 (4)
N1-C7-C8	115.5 (4)
C9-C8-C7	112.7 (4)
C9-C8-H8A	109.1
C7-C8-H8A	109.1
C9-C8-H8B	109.1
C7-C8-H8B	109.1
H8A-C8-H8B	107.8
C6-C1-C2-C3	0.1 (7)
N1-C1-C2-C3	179.0 (4)
C6-C1-C2-C11	-179.8 (4)
N1-C1-C2-C11	-0.9 (7)
C1-C2-C3-C4	0.4 (7)
C11-C2-C3-C4	-179.7 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-0.7 (8)
C3-C4-C5-C6	0.5 (7)
C3-C4-C5-C12	-179.1 (5)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.3 (7)
N1-C1-C6-C5	-179.2 (4)

$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9600
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9600
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.852(18)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	$0.830(19)$
$\mathrm{O} 4-\mathrm{H} 41$	$0.836(19)$
$\mathrm{O} 4-\mathrm{H} 42$	$0.827(19)$

$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$114.3(4)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	108.7

C8-C9-H9A 108.7
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \quad 108.7$
C8-C9—H9B 108.7
H9A-C9-H9B 107.6
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{O} 2 \quad 123.6$ (5)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9 \quad 124.5(5)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9 \quad 111.8$ (5)
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \quad 109.5$
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
$\mathrm{C} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
H11B-C11-H11C 109.5
$\mathrm{C} 5-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A} \quad 109.5$
$\mathrm{C} 5-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B} \quad 109.5$
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B} \quad 109.5$
$\mathrm{C} 5-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \quad 109.5$
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \quad 109.5$
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \quad 109.5$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1 \quad 126.8$ (4)

C7-N1—H1N 122 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \quad 111$ (3)
C10-O2-H2O 104 (4)
$\mathrm{H} 41-\mathrm{O} 4-\mathrm{H} 42 \quad 117$ (5)

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.0(7)$
$\mathrm{C} 12-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$179.6(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$21.9(7)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-160.2(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-75.3(5)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 3$	$-34.4(7)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$	$148.7(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$-1.3(8)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$-179.1(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$139.5(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$-41.6(7)$

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.85(2)$	$2.10(2)$	$2.914(4)$	$161(4)$
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 4^{\mathrm{ii}}$	$0.83(2)$	$1.81(2)$	$2.621(5)$	$164(5)$
$\mathrm{O} 4 — \mathrm{H} 41 \cdots \mathrm{O} 3$	$0.84(2)$	$2.01(2)$	$2.831(5)$	$168(5)$
$\mathrm{O} 4 — \mathrm{H} 42 \cdots \mathrm{O} 3^{\text {iii }}$	$0.83(2)$	$2.07(2)$	$2.882(5)$	$166(5)$
Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2 ;($ (ii) $x,-y+1 / 2, z-1 / 2 ;$ (iii) $-x+1,-y,-z+1$.				

Fig. 1

Fig. 2

